Samenvatting

Handbook of Statistical Analysis: AI and ML Applications, third edition, is a comprehensive introduction to all stages of data analysis, data preparation, model building, and model evaluation. This valuable resource is useful to students and professionals across a variety of fields and settings: business analysts, scientists, engineers, and researchers in academia and industry. General descriptions of algorithms together with case studies help readers understand technical and business problems, weigh the strengths and weaknesses of modern data analysis algorithms, and employ the right analytical methods for practical application.

This resource is an ideal guide for users who want to address massive and complex datasets with many standard analytical approaches and be able to evaluate analyses and solutions objectively. It includes clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques; offers accessible tutorials; and discusses their application to real-world problems.

Specificaties

ISBN13:9780443158452
Taal:Engels
Bindwijze:Paperback

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Part I – Introduction<br>1. Historical Background to Analytics<br>2. Theory<br>3. Data Mining and Predictive Analytic Process<br>4. Data Science Tool Types: Which one is Best?<br><br>Part II - Data Preparation<br>5. Data Access<br>6. Data Understanding<br>7. Data Visualization<br>8. Data Cleaning<br>9. Data Conditioning<br>10. Feature Engineering<br>11. Feature Selection<br>12. Data Preparation Cookbook<br><br>Part III – Modeling<br><br>13. Algorithms<br>14. Modeling<br>15. Model Evaluation and Enhancement<br>16. Ensembles & Complexity<br>17. Deep Learning vs. Traditional ML<br>18. Explainable AI (XAI) put after Deep Learning<br>19. Human in the Loop<br><br>Part IV - Applications<br>20. GENERAL OVERVIEW of an Application - Healthcare Delivery and Medical Informatics<br>21. Specific Application: Business: Customer Response<br>22. Specific Application: Education: Learning Analytics<br>23. Specific Application: Medical Informatics: Colon Cancer Screening<br>24. Specific Application: Financial: Credit Risk<br>25. Specific FUTURE Application: The &lsquo;INTELLIGENCE AGE (Revolution)&rsquo;: LLMs like ChatGPT - Tiny ML - H.U.M.A.N.E. - Etc.<br><br>Part V – Right Models – Luck - & Ethics of Analytics<br>26. Right Model for the Right Use<br>27. Ethics in Data Science<br>28. Significance of Luck<br><br>Part VI - Tutorials and Case Studies<br>Tutorial A Example of Data Mining Recipes Using Statistica Data Miner 13<br>Tutorial B Analysis of Hurricane Data (Hurrdata.sta) Using the Statistica Data Miner 13<br>Tutorial C Predicting Student Success at High-Stakes Nursing Examinations (NCLEX) Using SPSS Modeler and Statistica Data Miner 13<br>Tutorial D Constructing a Histogram Using MidWest Company Personality Data Using KNIME<br>Tutorial E Feature Selection Using KNIME<br>Tutorial F Medical/Business Tutorial Using Statistica Data Miner 13<br>Tutorial G A KNIME Exercise, Using Alzheimer&rsquo;s Training Data of Tutorial F (RAN note: This tutorial refers to the data used in Tutorial I, and it should be changed to refer to Tutorial F. I propose a new title: Tutorial G Medical/Business Tutorial with Tutorial F Data Using KNIME.<br>Tutorial H Data Prep 1-1: Merging Data Sources Using KNIME<br>Tutorial I Data Prep 1–2: Data Description Using KNIME<br>Tutorial J Data Prep 2-1: Data Cleaning and Recoding Using KNIME<br>Tutorial K Data Prep 2-2: Dummy Coding Category Variables Using KNIME<br>Tutorial L Data Prep 2-3: Outlier Handling Using KNIME<br>Tutorial M Data Prep 3-1: Filling Missing Values With Constants Using KNIME<br>Tutorial N Data Prep 3-2: Filling Missing Values With Formulas Using KNIME<br>Tutorial O Data Prep 3-3: Filling Missing Values With a Model Using KNIME<br><br>Back Matter:<br>Appendix-A – Listing of TUTORIALS and other RESOUCES on this book&rsquo;s COMPANION WEB PAGE<br>Appendix B – Instructions on HOW TO USE this book&rsquo;s COMPANION WEB PAGE

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Handbook of Statistical Analysis