1. Einführung.- 1.1 Sicherheitsabstand zwischen Beanspruchung und Beanspruchbarkeit.- 1.2 Ma?nahmen zur Vermeidung menschlicher Fehlhandlungen.- 1.3 Ma?nahmen zur Begrenzung des Schadensausma?es.- 1.4 Die traditionelle, empirische Sicherheitsanalyse.- 1.5 Die moderne theoretische Sicherheitsanalyse - Überblick und Einteilung der Methoden.- Mathematische ModelIierung der zufälligen Eigenschaften der Bauwerke und ihrer Beanspruchungen.- 2.1 Grundsätzliches.- 2.2 Zufällige Ereignisse.- 2.3 Zufallsgrö?.- 2.3.1 Eindimensionale Zufallsgrö?en.- 2.3.1.1 Verteilungsfunktion und Verteilungsdichte.- 2.3.1.2 Momente.- 2.3.1.3 Einige praktisch wichtige Verteilungen.- 2.3.1.4 Verteilungen, deren Parameter Zufallsgrö?en sind.- 2.3.1.5 Transformierte Verteilungen.- 2.3.2 Mehrdimensionale Zufallsgrö?en.- 2.3.3 Folgen unabhängiger Zufallsgrö?en.- 2.4 Stochastische Prozesse.- 2.4.1 Einführung.- 2.4.2 Verteilungsfunktion und Verteilungsdichte.- 2.4.3 Momente eines stochastischen Prozesses.- 2.4.4 Das Problem der Niveaukreuzung.- 2.4.5 Kontinuierliche, differenzierbare stochastische Prozesse.- 2.4.6 Erneuerungsprozesse.- 2.4.7 Pulsprozesse.- 2.4.7.1 Zweiparametrige Pulsprozesse.- 2.4.7.2 Dreiparametrige Pulsprozesse.- 2.4.7.3 Unterbrochene kontinuierliche Prozesse.- Zuverlässigkeitstheorie tragender Baukonstruktionen.- 3.1 Grundlagen und Begriffe.- 3.1.1 Versagenswahrscheinlichkeit und Überle benswahrscheinlichkeit.- 3.1.2 Zur Ermittlung der Versagenswahrscheinlichkeit.- 3.1.3 Die operative Versagenswahrscheinlichkeit.- 3.1.4 Die Zeitabhängigkeit der Versagenswahrscheinlichkeit.- 3.1.5 Lebensdauer und Nutzungsdauer.- 3.1.6 Ausfallrate.- 3.1.7 Der Grenzzustand als Funktion der Basisvariablen.- 3.2 Die Berechnung der Versagenswahrscheinlichkeit.- 3.2.1 Übersicht.- 3.2.2 Versagen nach einem Grenzzustand.- 3.2.2.1 Alle Basisvariablen sind Zufallsgrö?en.- 3.2.2.2 Eine Basisvariable ist zeitabhängig.- 3.2.2.3 Mehrere Basisvariable sind zeitabhängig.- 3.2.3 Das Versagen von Systemen mit mehreren Grenzzuständen.- 3.2.3.1 Grundsätzliches.- 3.2.3.2 Sonderfälle.- 3.2.3.3 Lösung nach der Zuverlässigkeitstheorie 1. Ordnung.- 3.2.3.4 Schranken für Seriensysteme.- 3.3 Besonderheiten bei bestehenden Konstruktionen.- 3.4 Die zuverlässigkeitstheoretische Bemessung.- 3.5 Zur Festlegung eines erforderlichen Sicherheitsniveaus.- 3.5.1 Nachrechnung bestehender Normen.- 3.5.2 Vergleich mit individuellen Unfall- und Todeshäufigkeiten.- 3.5.3 Risikobetrachtungen.- 3.5.4 Ökonomisch optimale Versagenswahrscheinlichkeit.- 3.5.5 Vorläufige Vorschläge für die Festlegung von erforderlichen Sicherheitsniveaus.- Baupraktische Sicherheitsmodelle.- 4.1 Allgemeines.- 4.2 Nennwert, Charakteristischer Wert.- 4.3 Globaler Sicherheits beiwert und zulässige Spannung.- 4.4 Teilsicherheitsbeiwerte.- 4.4.1 Teilsicherheitsbeiwerte im Traglastverfahren.- 4.4.2 Teilsicherheitsbeiwerte in der Methode der Grenzzustände.- 4.4.2.1 Grundsätze.- 4.4.2.2 Lastfaktor Yf.- 4.4.2.3 Materialfaktor Ym.- 4.4.2.4 Teilsicherheitsbeiwert Yd zur Erfassung von Modellungenauigkeiten.- 4.4.2.5 Teilsicherheitsbeiwert Yn zur Differenzierung des SicherheitsnIveaus.- 4.4.2.6 Lastkombinationsregel und Kombinationsfaktor.- Anwendung der Zuverlässigkeitstheorie auf Normen.- 5.1 Allgemeines.- 5.2 Globaler Sicherheitsfaktor.- 5.3 Bestimmung von Teilsicherheitsbeiwerten auf der Grundlage des Bemessungspunktes.- 5.4 Allgemeine Optimierungsmethoden.- 5.5 Bestimmung der Kombinationsfaktoren.- Statistische Daten.- 6.1 Allgemeines.- 6.2 Materialeigenschaften.- 6.2.1 Stahl.- 6.2.2 Beton.- 6.2.3 Holz.- 6.2.4 Baugrund.- 6.3 Lasten.- 6.3.1 Eigenlast.- 6.3.2 Verkehrslasten im Hochbau.- 6.3.3 Schneelast.- 6.3.4 Windlast.- 6.3.5 Fahrzeuglasten des Stra?enverkehr.- Literatur.- Anhang I: Zusammenstellung einiger häufig verwendeter Bezeichnungen.- Anhang II: Formelzusammenstellungen.